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K-nearest neighbors 
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Happy Halloween
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ELLIS PHD PROGRAM

https://ellis.eu/news/ellis-phd-program-call-for-applications-2024
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Launch polling system

https://participant.turningtechnologies.eu/en/join

Acces as GUEST and enter the session id: appliedml2020
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Will our witch wear a spiky hat more often than flat hat ?

C2: spiky hat
C1: flat hat
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Decision Boundary 
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If we model the two classes with GMM + Bayes 

with one Gaussian to model each class

A. C1

B. C2
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Which broom will our witch use most frequently? 

C2: Broom 2

C1: Broom 1 

If we use GMM + Bayes with one Diagonal Gaussian for each class
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Will the answer be the same

if we were to use other covariance matrices?

C2: Broom 2

C1: Broom 1 

M       T      W       Th        F        Sa      Su

1C 0y = =

2 C 1y = =

A. Yes

B. No
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Can we classify the outer datapoints using only the middle points for training?

A. Yes for both a and b

B. No for both a and b

C. Yes for a only

D. Yes for b only

E. I do not know
8

(a) (b)

Training set Training set

Test 
Test 

Test Test 
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To determine the class label, compute optimal Bayes classifier.

( ) ( )1 21 A point  belongs to class  if  | |x C p y C x p y C x=  =

Determining the boundary across two pdf-s

We must determine the class with class label c that is most likely to have 

generated the datapoint :   ( | )yx Cp x=

( ) ( | )
Bayes's rule:     ( | )
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( ): Marginal on p x x
( ): Probability of class Cp y C=

class conditional distribution of 

~ how the samples are distributed within class C.
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( ) ( ) ( ) ( ) ( ) ( )
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Gaussian Discriminant Rule
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( ) ( ) ( ) ( ) ( ) ( )
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Gaussian Discriminant Rule
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Effect of variance disappears -- back to norm-2 
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Gaussian Discriminant Rule
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Contest
Find the boundary when using GMM with one Gauss fct for each class
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( ) ( ) ( ) ( ) ( ) ( )
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Boundary at points , s.t. 
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Winner gets a sweet
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Contest

Draw the boundary when using GMM with one Gauss fct for each class
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( ) ( ) ( ) ( ) ( ) ( )
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1 1 1 1 2 2 2 2

Boundary at points , s.t. 
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−  − +  = −  − + 

Winner gets a sweet
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Recall: to determine the class label, compute optimal Bayes classifier.

( ) ( )1 21 A point  belongs to class  if  | |x C p y C x p y C x=  =

Nonlinearity of the Decision Boundary

15
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Nonlinearity of the Decision Boundary
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The decision boundary has the form:  

2 0 in the univariate case
Quadratic Discriminant Analysis
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Example of binary classification using 

2 Gaussian Mixture Models with 2 Gauss functions each

Where is the boundary?

17

Classification with multiple Gauss fcts (GMM-s)
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Maximum Likelihood Discriminant Rule 

for Multi-Class Classification

The maximum likelihood (ML) discriminant rule predicts the class of an 
observation x  using:  

1...

( ) arg max ( )        for    classesk
k K

c x p x K
=

=
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ML discriminant rule is minimum of minus the log-likelihood (equiv. to 
maximizing the likelihood):

( )( ) ( ) 
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Contest
Find the boundaries for the two distributions below
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( )( ) ( ) 
1

( ) arg min log
T

k k k k k
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Even though there are two classes, the groups being distinct, the 

boundaries can be thought of as a 4-class classification problem.

Assume GMM with 

spherical Gauss functions

Winner gets a sweet
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Gaussian ML Discriminant Rule and LDA

When all class densities have the same covariance matrix, k =   the 

discriminant rule is linear. This can be turned into a single optimization 

problem for supervised learning when the class labels are known. This is 

known as Linear discriminant analysis (LDA).
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See Lecture Notes for description of LDA.

LDA can be used as projection technique, like PCA, using as objective 

function the discriminant rule. 

It finds the projection that separates best the two classes.
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Gaussian ML Discriminant Rule and LDA

1st PCA projection

2nd PCA projection

LDA projection
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Gaussian ML Discriminant Rule and LDA

LDA projection

LDA fails when the classes cannot be separated linearly
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LDA projection

GMM with multiple Gauss functions for each class
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LDA projection

How would you evaluate which model is the best?
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Can you interpret these results?
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Curse of Dimensionality

N: Nb of dimensions

M: Nb of datapoints 

Computational Costs

O(N,M)

O(N2, M2) 

Computational costs may grow as a function 

of number of dimensions or of number of datapoints

26
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Example : Classification with 2 GMMs 

(1 Gaussian per model, spherical covariance matrix)

How many parameters do you need to represent the learned model?

27
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Example : Classification with 2 GMMs 

(1 Gaussian per model, full covariance matrix)

28

How many parameters do you need to represent the learned model?

Computational costs in GMM grow quadratically with N and 

linearly with M at training and quadratically with N at testing
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Choose among these 3 models depending on your needs
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A. a

B. b

C. c

30

Classification Error on training and testing sets

Training Error Testing Error

a Low High

b Low Low

c High High

Which of these three 

combination is 

overfitting?



APPLIED MACHINE LEARNINGApplied Machine LearningMachine Learning I

Crossvalidation & Choice of training/testing ratio

❖ Avoid overfitting (i.e. fitting too well all datapoints including noise)

 → Train the classifier with a small sample of all datapoints 

 → Test the classifier with the remaining datapoints. 

❖ Typical choice of training/testing set ratio is 2/3rd training, 1/3rd testing.

❖ The smaller the ratio, the more robust the classification

❖ Several-fold crossvalidation

❖ Typical choice is 10-fold crossvalidation. However, this depends on how many 

datapoints you have in your dataset!

31



APPLIED MACHINE LEARNINGApplied Machine LearningMachine Learning I

Classification with K- Nearest Neighbors (K-NN)

K =1

( | , 1) ?,p y green x K= = =

K = 4

( | , 4) ?,p y green x K= = =

K = 13
( | , 13) ?p y green x K= = =

32

( | , 1) 1,p y green x K= = =
( | , 4) 0.25,p y green x K= = =

( | , 13) 0.69p y green x K= = =
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Can K-NN separate these two classes with norm-2 & K=1?

A. YES

B. NO

C. I do not know

33

Classification with k- Nearest Neighbors (K-NN)
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How many points at minimum does it need for correct classification?

A. 2

B. 3

C. 4

34

Classification with k- Nearest Neighbors (K-NN)
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Draw the boundaries found by KNN for different K

35

K=1, K=3, K=20
Winner gets a sweet
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KNN application – Training EMG controller

EMG control App : provides visualization and a way to collect labelled data rapidly 

Training phase (~30 sec) : User input from 8D EMG -> labelled into 3 classes (closed, open, rest) using the app

Control phase : Real-time KNN classification to control exoskeleton accordingly
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