

APPLIED MACHINE LEARNING

Interactive Lecture

Classification with
Gaussian Mixture Models (GMM) + Bayes
K-nearest neighbors

Happy Halloween

SWISS ROBOTICS DAY

SRD 2024 EDITION

ORGANIZING COMMITTEE

PREVIOUS EDITIONS ~

CONTACT

SWISS ROBOTICS DAY 2024

1st of November • Messe und Congress Center Basel Messepl. 21, 4058 Basel

15 years at the forefront of the Swiss robotics exhibitions & networking scene

2:17:22

Days Hours Minutes

Click for Details & Registration



The call is open

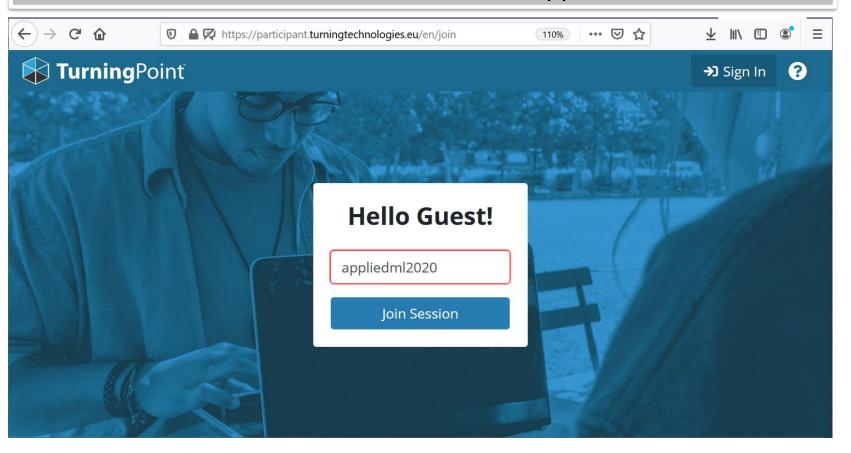
The **ELLIS PhD program** is a key pillar of the ELLIS initiative whose goal is to foster and educate the best talent in machine learning and related research areas by pairing outstanding students with leading academic and industrial researchers in Europe. The program also offers a variety of networking and training activities, including summer schools and workshops. Each PhD student is co-supervised by one ELLIS fellow/scholar or unit faculty and one ELLIS fellow/scholar, unit faculty or member based in different European countries. Students conduct an exchange of at least 6 months with the international advisor during their degree. One of the advisors may also come from industry, in which case the student will collaborate closely with the industry partner, and spend min. 6 months conducting research

The call for applications to join as a PhD student in 2024 is open. Apply now!

Launch polling system

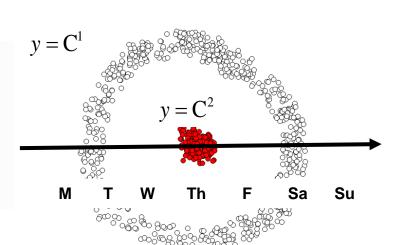
https://participant.turningtechnologies.eu/en/join

Acces as GUEST and enter the session id: appliedml2020



Will our witch wear a spiky hat more often than flat hat?

C1: flat hat



C2: spiky hat

If we model the two classes with GMM + Bayes with one Gaussian to model each class

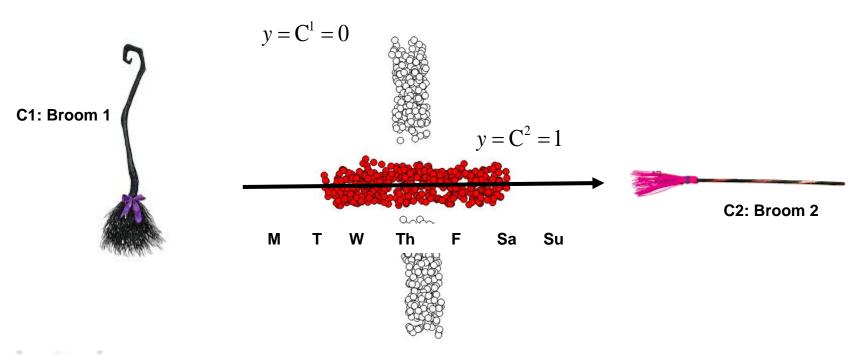
Decision Boundary

$$p(y = C^1 \mid x) = p(y = C^2 \mid x)$$

$$p(x \mid y = C) \sim p\left(x \mid \mu^{c}, \Sigma^{c}\right), \ \Sigma^{c} = \begin{bmatrix} \sigma^{c} & 0 \\ 0 & \sigma^{c} \end{bmatrix}$$

$$\mu_{c}, \Sigma_{c} : \text{ mean and covariance matrix}$$

Which broom will our witch use most frequently?

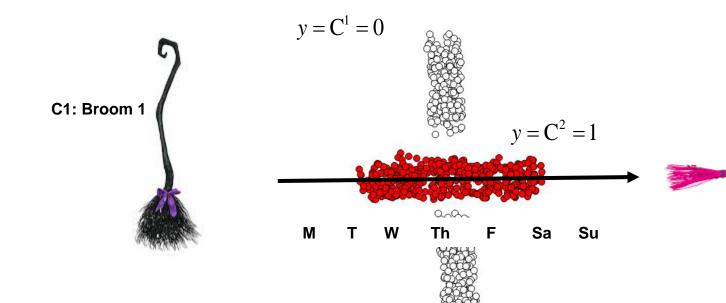


If we use GMM + Bayes with one Diagonal Gaussian for each class

Decision Boundary $p(y = C^1 | x) = p(y = C^2 | x)$

 $y = C) \sim p(x \mid \mu^{c}, \Sigma^{c}), \Sigma^{c} = \begin{bmatrix} \sigma_{1}^{c} & 0 \\ 0 & \sigma_{2}^{c} \end{bmatrix}$ $\mu^{c}, \Sigma^{c} : \text{ mean and covariance matrix}$

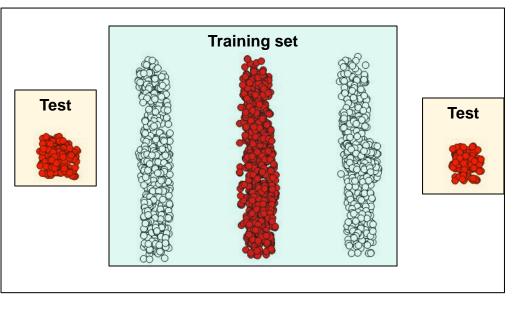
Will the answer be the same if we were to use other covariance matrices?



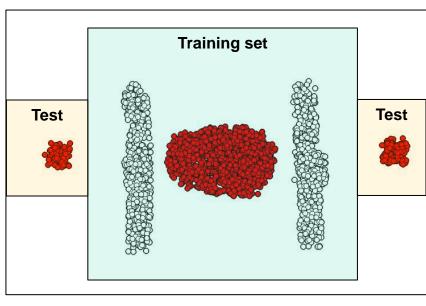
C2: Broom 2

- A. Yes
- B. No

Can we classify the outer datapoints using only the middle points for training?



(a)



(b)

- A. Yes for both a and b
- B. No for both a and b
- C. Yes for a only
- D. Yes for b only
- E. I do not know

Determining the boundary across two pdf-s

We must determine the class with class label c that is most likely to have generated the datapoint x: p(y = C | x)

Bayes's rule:
$$p(y = C \mid x) = \frac{p(y = C)p(x \mid y = C)}{p(x)}$$

$$p(y = C)$$
: Probability of class C

p(x): Marginal on x

$$p(x \mid y = C)$$
: class conditional distribution of x how the samples are distributed within class C . $p(x \mid y = C^1) \sim p(x \mid \mu_1, \Sigma_1) = \frac{1}{(2\pi)^{N/2} |\Sigma_1|^{1/2}} e^{-(x-\mu_1)(\Sigma_1)^{-1}(x-\mu_1)^T}$

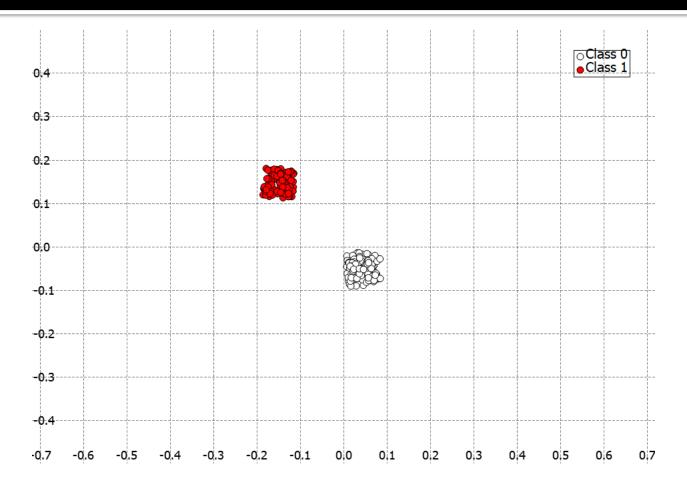
To determine the class label, compute optimal Bayes classifier.

A point x belongs to class
$$C^1$$
 if $p(y = C^1 | x) > p(y = C^2 | x)$

Assuming equal class distribution,
$$p(y = C^1) = p(y = C^2)$$
 & $\ln p(y = C^1) = \ln p(y = C^2)$

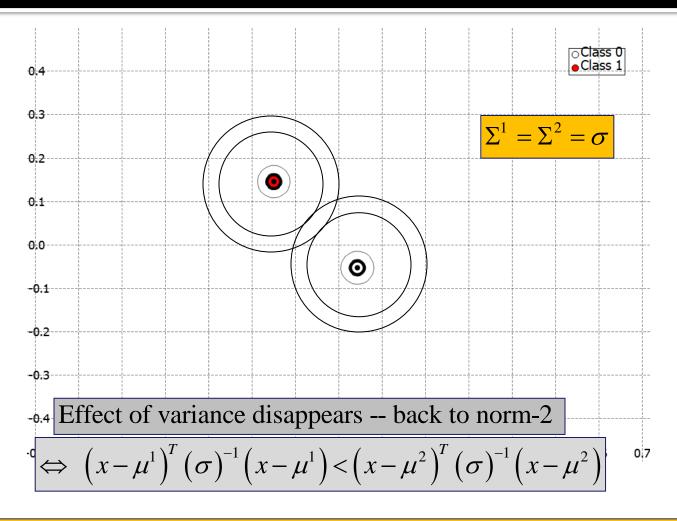
$$\Leftrightarrow \left(x-\mu^{1}\right)^{T}\left(\Sigma^{1}\right)^{-1}\left(x-\mu^{1}\right) + \log\left|\Sigma^{1}\right| < \left(x-\mu^{2}\right)^{T}\left(\Sigma^{2}\right)^{-1}\left(x-\mu^{2}\right) + \log\left|\Sigma^{2}\right|$$

Gaussian Discriminant Rule



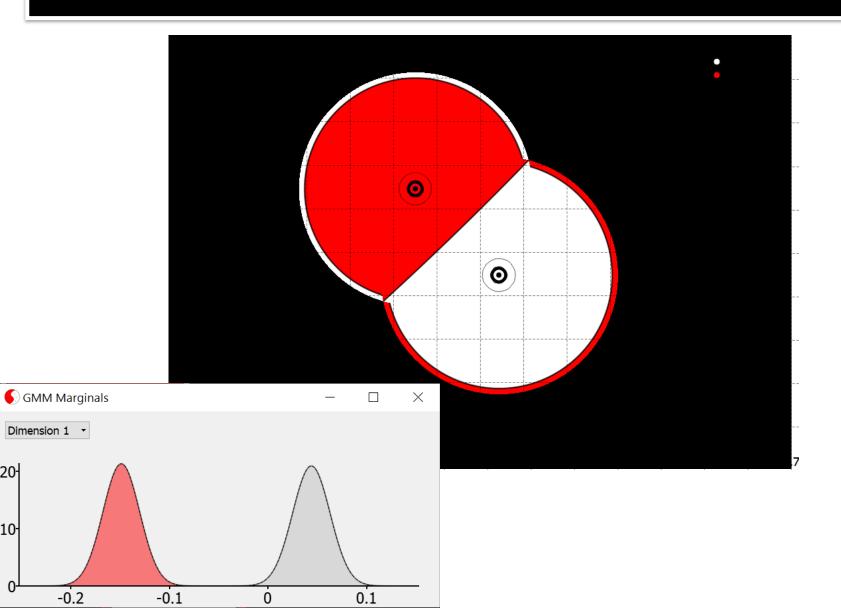
$$\Leftrightarrow \left(x - \mu^{1} \right)^{T} \left(\Sigma^{1} \right)^{-1} \left(x - \mu^{1} \right) + \log \left| \Sigma^{1} \right| < \left(x - \mu^{2} \right)^{T} \left(\Sigma^{2} \right)^{-1} \left(x - \mu^{2} \right) + \log \left| \Sigma^{2} \right|$$

Gaussian Discriminant Rule



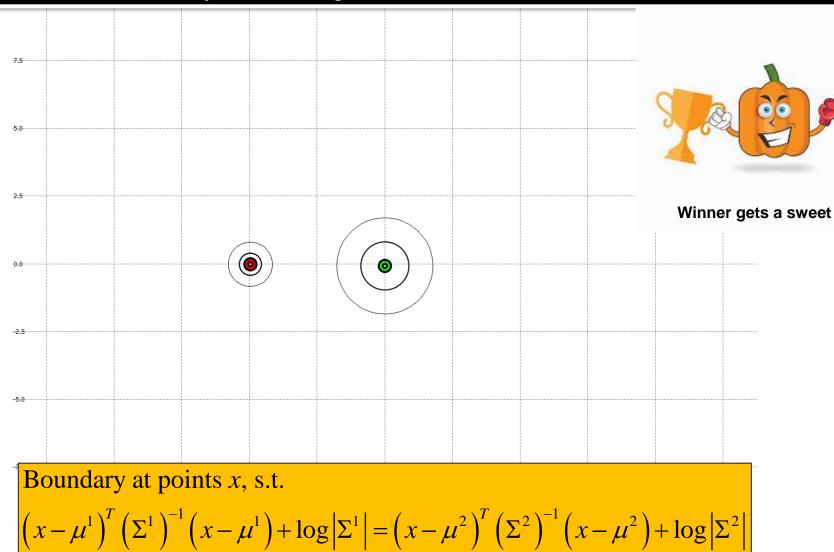
$$\iff (x - \mu^{1})^{T} (\Sigma^{1})^{-1} (x - \mu^{1}) + \log |\Sigma^{1}| < (x - \mu^{2})^{T} (\Sigma^{2})^{-1} (x - \mu^{2}) + \log |\Sigma^{2}|$$

Gaussian Discriminant Rule



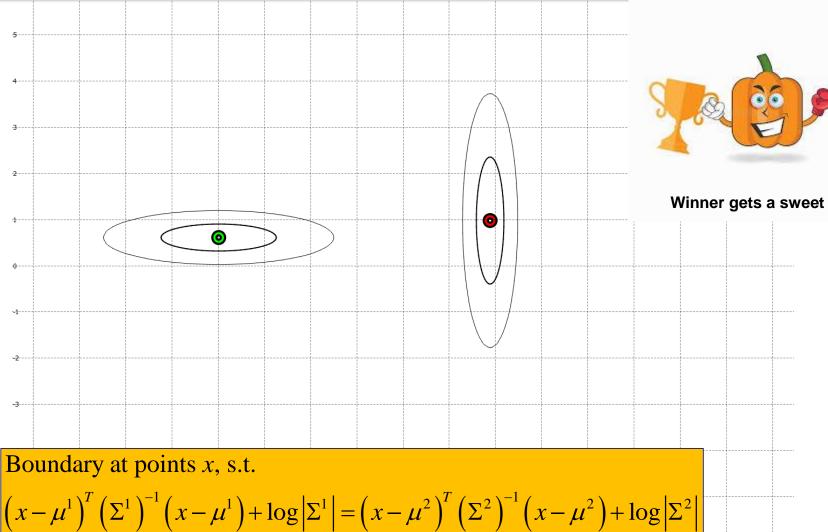
Contest

Find the boundary when using GMM with one Gauss fct for each class



Contest

Draw the boundary when using GMM with one Gauss fct for each class



Nonlinearity of the Decision Boundary

Recall: to determine the class label, compute optimal Bayes classifier.

A point x belongs to class
$$C^1$$
 if $p(y = C^1 | x) > p(y = C^2 | x)$

$$\Rightarrow \ln p(y = C^1 | x) > \ln p(y = C^2 | x)$$

Consider the univariate case (1D data) and classes equally likely $p(y = C^1) = p(y = C^2)$

$$\frac{(x-\mu_1)^2}{2\sigma_1^2} + \ln\sqrt{2\pi}\sigma_1 = \frac{(x-\mu_1)^2}{2\sigma_2^2} + \ln\sqrt{2\pi}\sigma_2$$

$$\frac{x^2 - 2x\mu_1 + \mu_1^2}{2\sigma_1^2} - \frac{x^2 - 2x\mu_2 + \mu_2^2}{2\sigma_2^2} + \ln\sqrt{2\pi}(\sigma_1 - \sigma_2) = 0$$

$$\left(\frac{\sigma_2^2}{2\sigma_1^2\sigma_2^2} - \frac{\sigma_1^2}{2\sigma_1^2\sigma_2^2}\right)x^2 - \left(\frac{\sigma_2^2\mu_1 - \sigma_1^2\mu_2}{\sigma_1^2\sigma_2^2}\right)x + \frac{\sigma_2^2\mu_1^2 - \sigma_1^2\mu_2^2}{2\sigma_1^2\sigma_2^2} + \ln\sqrt{2\pi}(\sigma_1 - \sigma_2) = 0$$

Nonlinearity of the Decision Boundary

The decision boundary has the form:

$$ax^2 + bx + c = 0 \rightarrow$$
 in the univariate case $x^T Ax + b^T x + c = 0 \rightarrow$ in the multivariate case Quadratic Discriminant Analysis

In the case where $\sigma_1^2 = \sigma_2^2$ or $\Sigma_1 = \Sigma_2$ for the multivariate case

$$\left(\frac{\sigma_{2}^{2}}{2\sigma_{1}^{2}\sigma_{2}^{2}}\right)x^{2} - \left(\frac{\sigma_{2}^{2}\mu_{1} - \sigma_{1}^{2}\mu_{2}}{\sigma_{1}^{2}\sigma_{2}^{2}}\right)x + \frac{\sigma_{2}^{2}\mu_{1}^{2} - \sigma_{1}^{2}\mu_{2}^{2}}{2\sigma_{1}^{2}\sigma_{2}^{2}} + \ln\sqrt{2\pi}(\sigma_{1} - \sigma_{2}) = 0$$

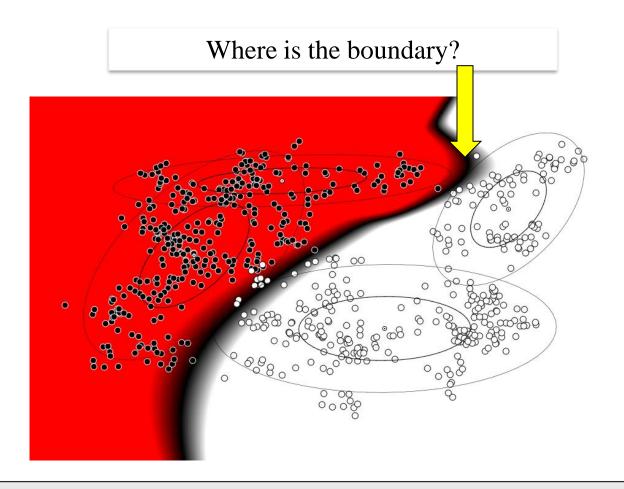
$$bx + c = 0 \rightarrow \text{in the univariate case}$$

 $b^T x + c = 0 \rightarrow \text{in the multivariate case}$

Linear Discriminat Analysis

Linear equation → Linear boundary

Classification with multiple Gauss fcts (GMM-s)



Example of binary classification using 2 Gaussian Mixture Models with 2 Gauss functions each

Maximum Likelihood Discriminant Rule for Multi-Class Classification

The maximum likelihood (ML) discriminant rule predicts the class of an observation x using:

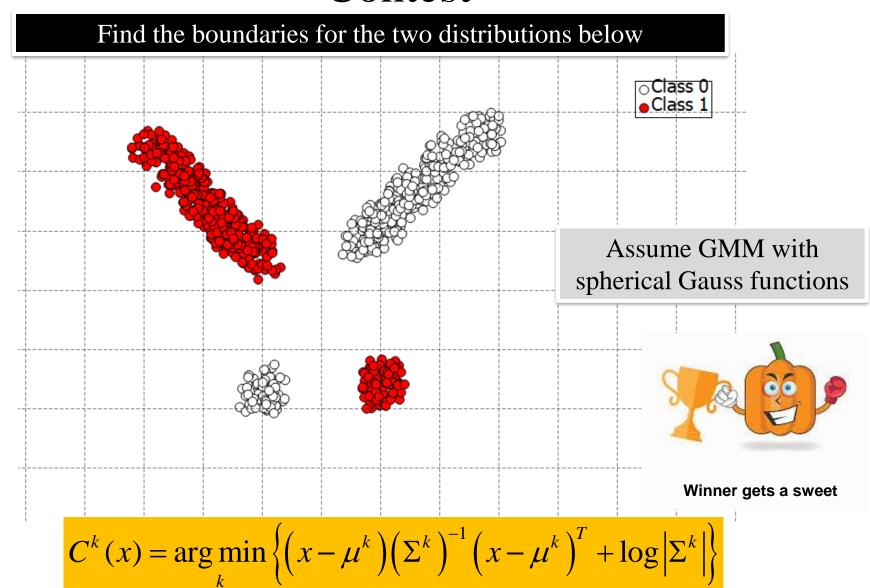
$$c(x) = \underset{k=1...K}{\operatorname{arg max}} p_k(x)$$
 for K classes

ML discriminant rule is minimum of minus the log-likelihood (equiv. to maximizing the likelihood):

$$C^{k}(x) = \arg\min_{k} \left\{ \left(x - \mu^{k} \right) \left(\Sigma^{k} \right)^{-1} \left(x - \mu^{k} \right)^{T} + \log \left| \Sigma^{k} \right| \right\}$$

Even though there are two classes, the groups being distinct, the boundaries can be thought of as a 4-class classification problem.

Contest



Gaussian ML Discriminant Rule and LDA

When all class densities have the same covariance matrix, $\Sigma^k = \Sigma$, the discriminant rule is linear. This can be turned into a single optimization problem for supervised learning when the class labels are known. This is known as Linear discriminant analysis (LDA).

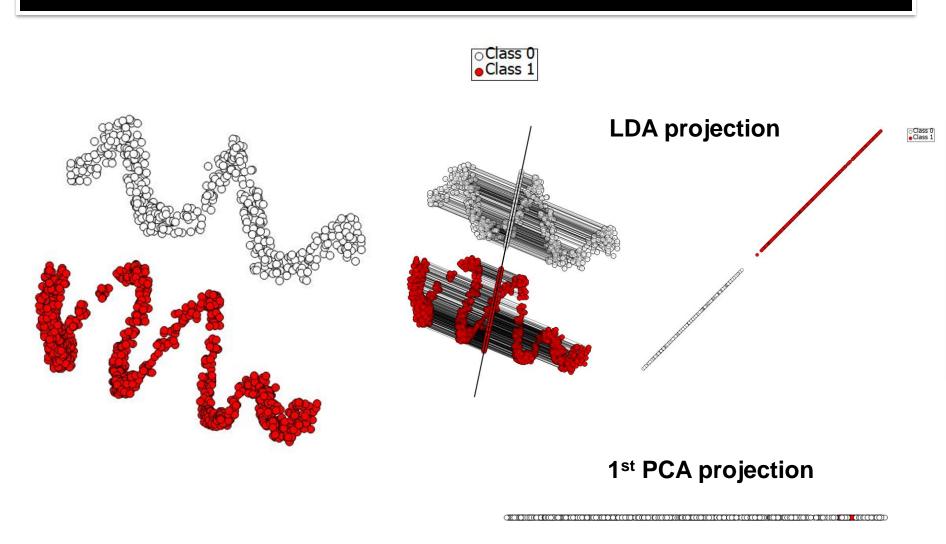
$$0 < (x - \mu^1)(\Sigma)^{-1}(x - \mu^1)^T < (x - \mu^2)(\Sigma)^{-1}(x - \mu^2)^T$$
 or equivalently

$$c_k(x) = \underset{k=\{1,2\}}{\arg\min} \left\{ \left(x - \mu^k \right) \left(\Sigma \right)^{-1} \left(x - \mu^k \right)^T \right\}$$

LDA can be used as projection technique, like PCA, using as objective function the discriminant rule.

It finds the projection that separates best the two classes.

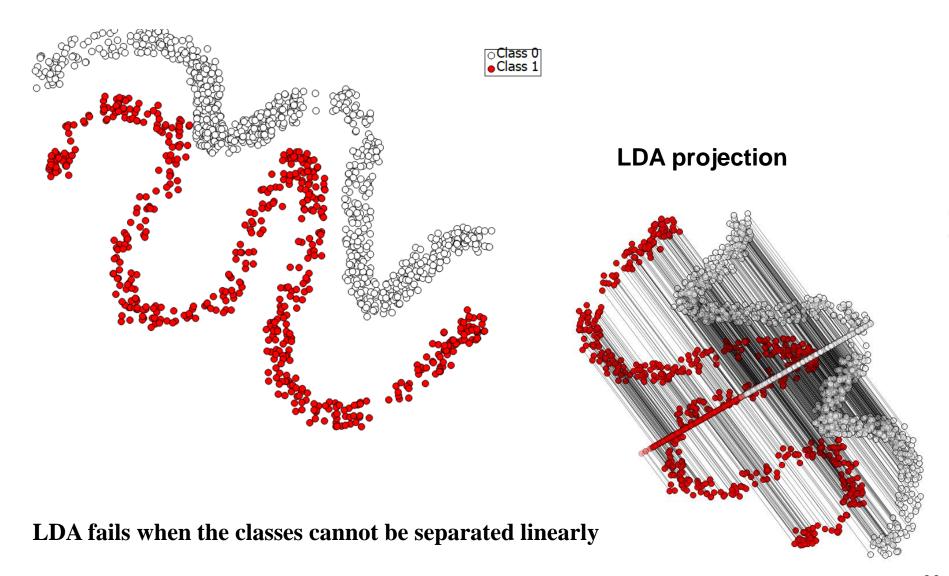
Gaussian ML Discriminant Rule and LDA



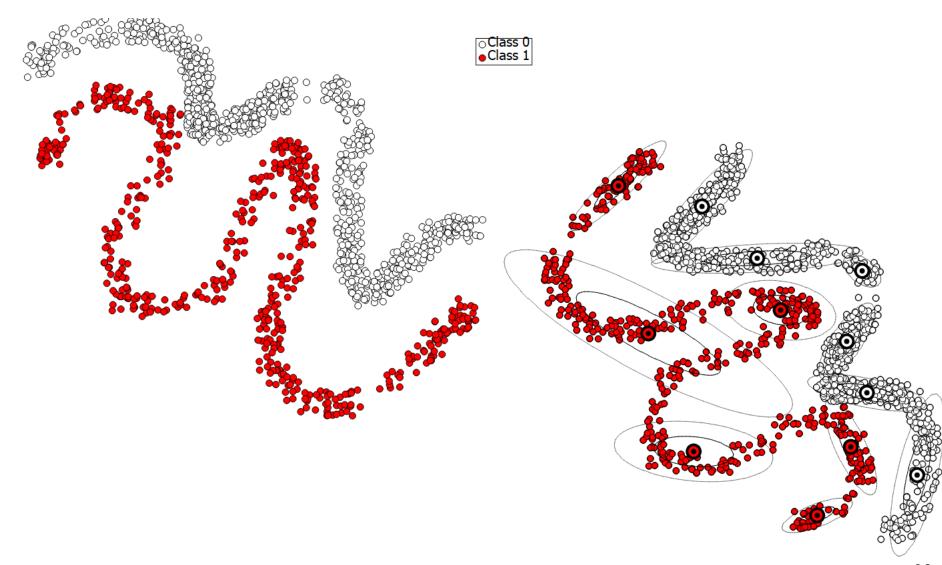
2nd PCA projection

21

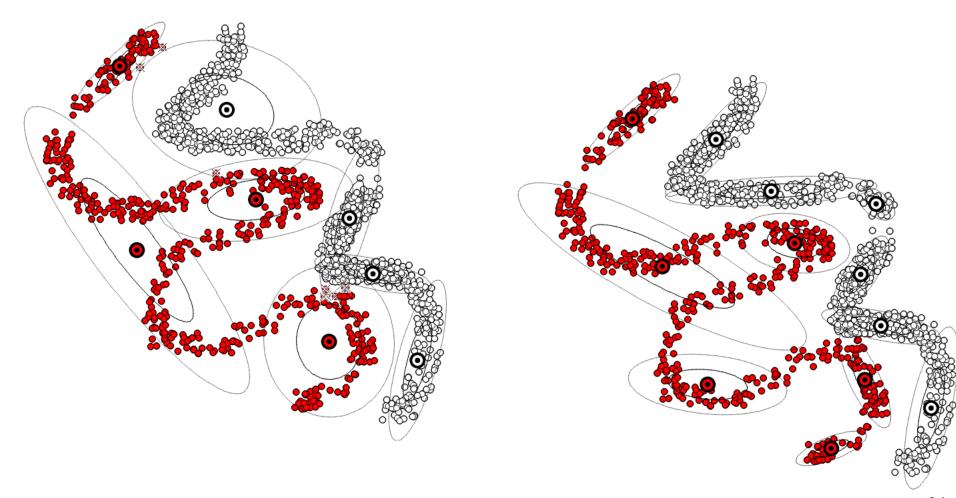
Gaussian ML Discriminant Rule and LDA



GMM with multiple Gauss functions for each class

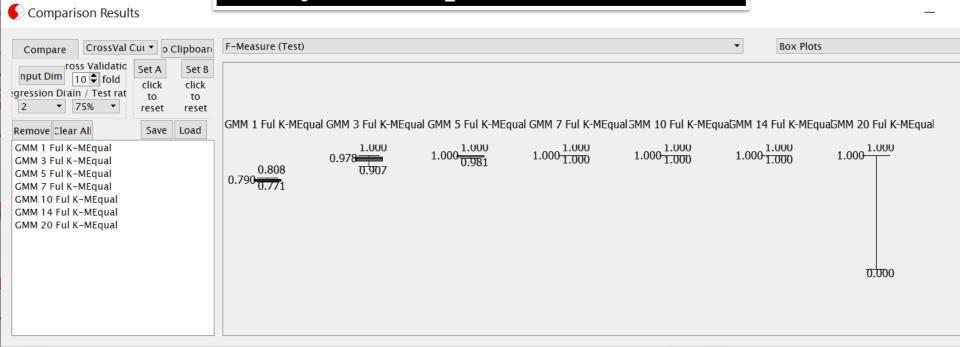


How would you evaluate which model is the best?



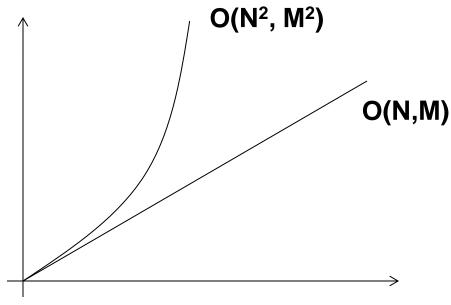
Machine Learning I

Can you interpret these results?



Curse of Dimensionality

Computational Costs



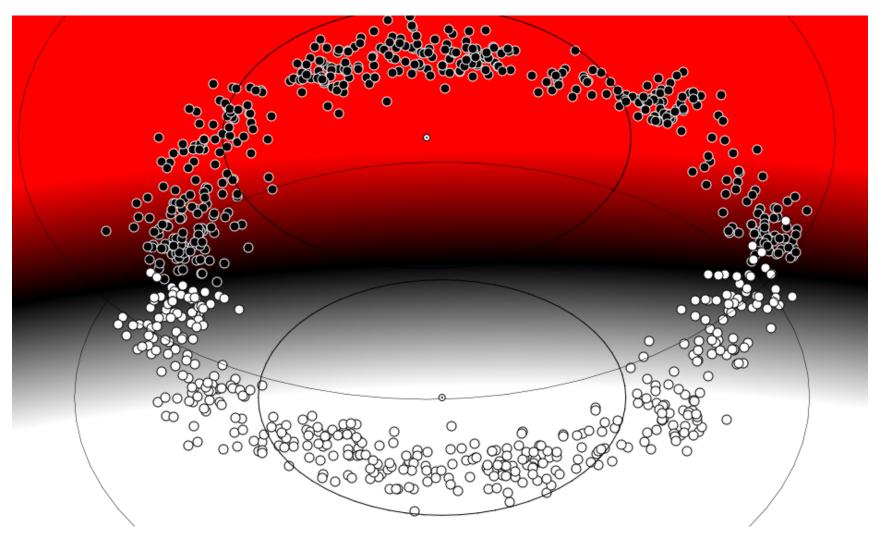
N: Nb of dimensions

M: Nb of datapoints

Computational costs may grow as a function of number of dimensions or of number of datapoints

Example: Classification with 2 GMMs

(1 Gaussian per model, spherical covariance matrix)

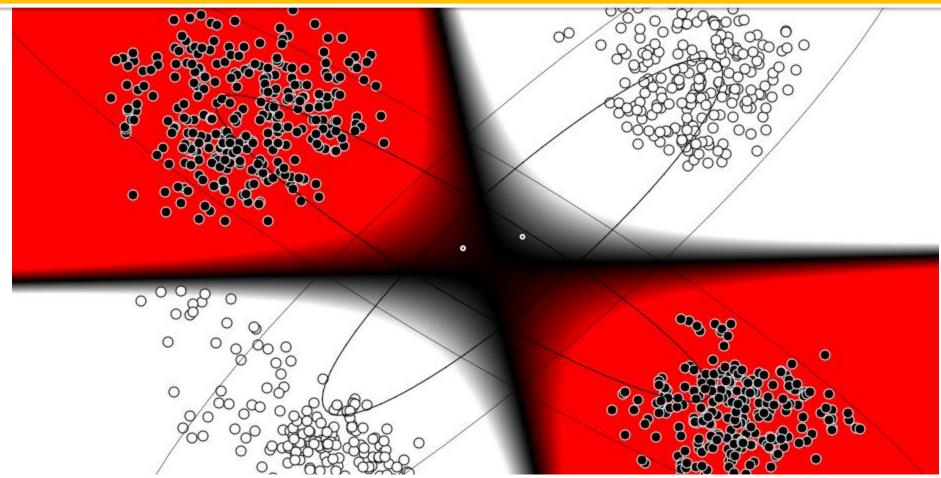


How many parameters do you need to represent the learned model?

Example: Classification with 2 GMMs

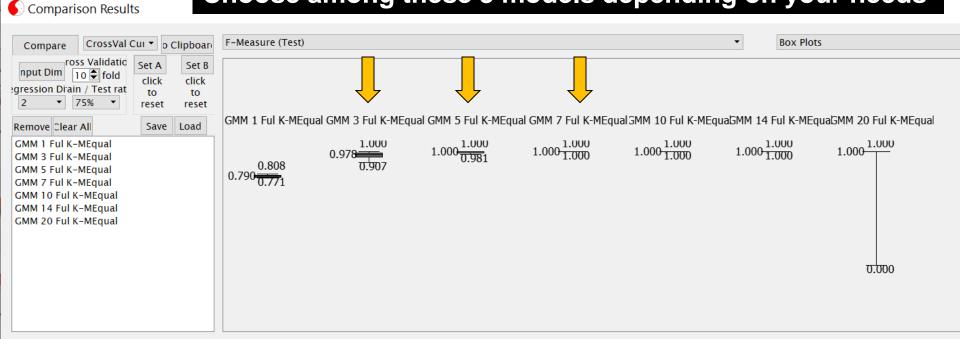
(1 Gaussian per model, full covariance matrix)

Computational costs in GMM grow quadratically with N and linearly with M at training and quadratically with N at testing

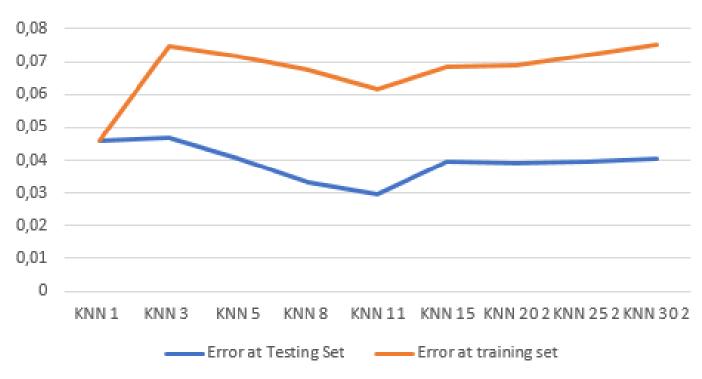


How many parameters do you need to represent the learned model?

Choose among these 3 models depending on your needs



Classification Error on training and testing sets



Which of these three combination is overfitting?

A. a

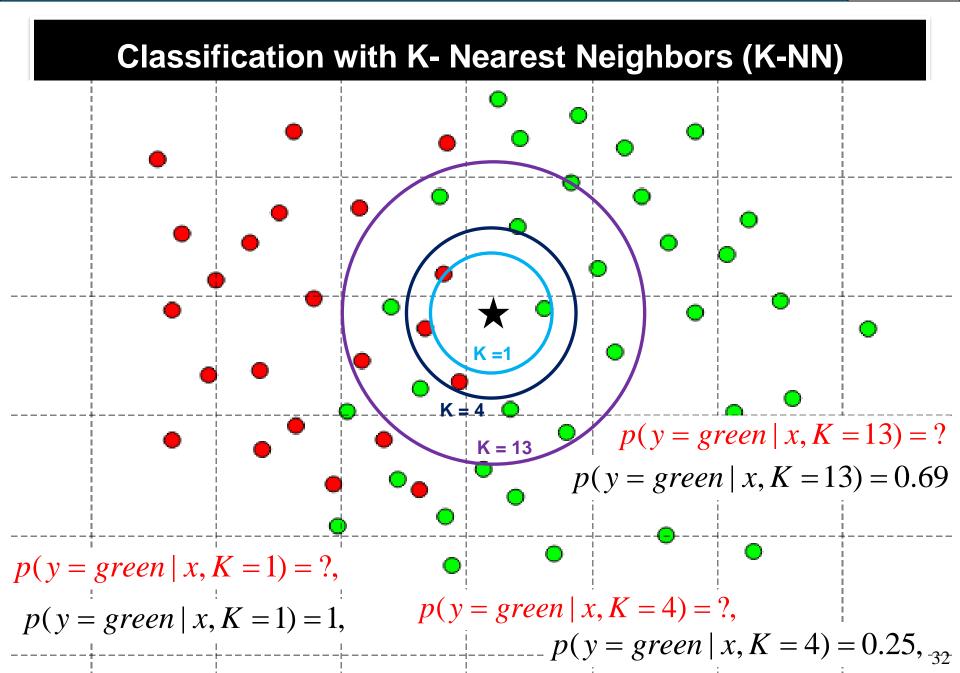
B. b

C. c

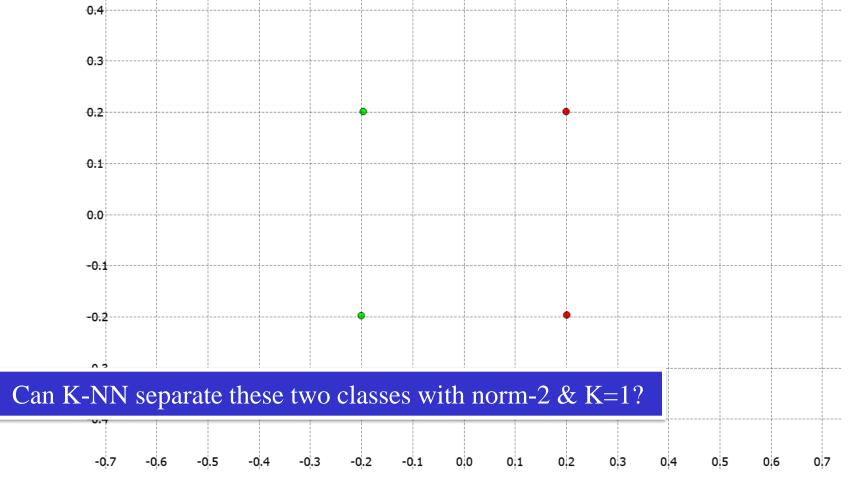
	Training Error	Testing Error
a	Low	High
b	Low	Low
c	High	High

Crossvalidation & Choice of training/testing ratio

- ❖ Avoid <u>overfitting</u> (i.e. fitting too well all datapoints including noise)
 - → Train the classifier with a small sample of all datapoints
 - → Test the classifier with the remaining datapoints.
- \clubsuit Typical choice of training/testing set ratio is $2/3^{rd}$ training, $1/3^{rd}$ testing.
- ❖ The smaller the ratio, the more robust the classification
- **Several-fold crossvalidation**
- ❖ Typical choice is 10-fold crossvalidation. However, this depends on how many datapoints you have in your dataset!

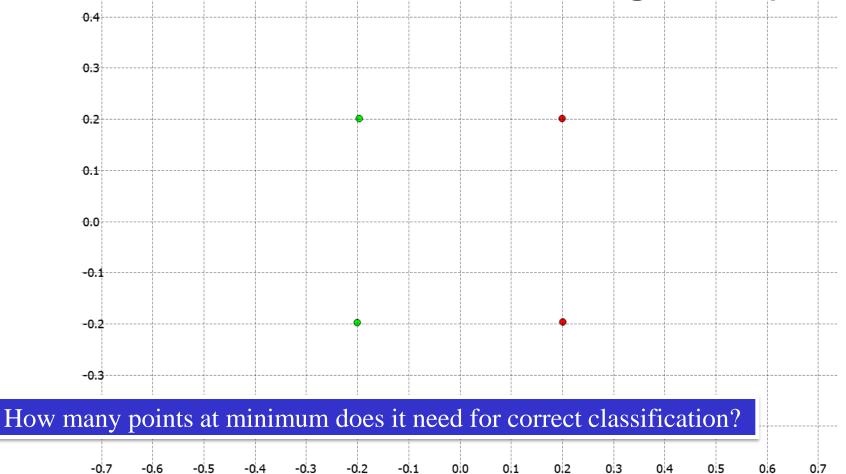


Classification with k- Nearest Neighbors (K-NN)



- A. YES
- B. NO
- C. I do not know

Classification with k- Nearest Neighbors (K-NN)

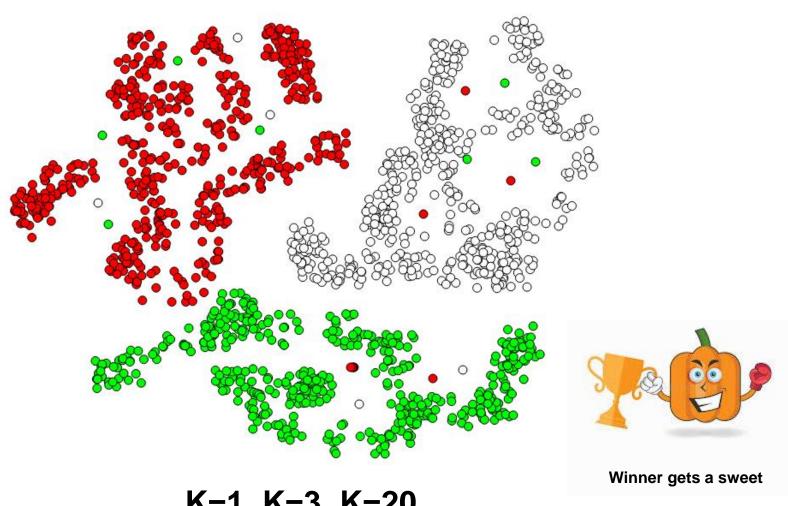


A. 2

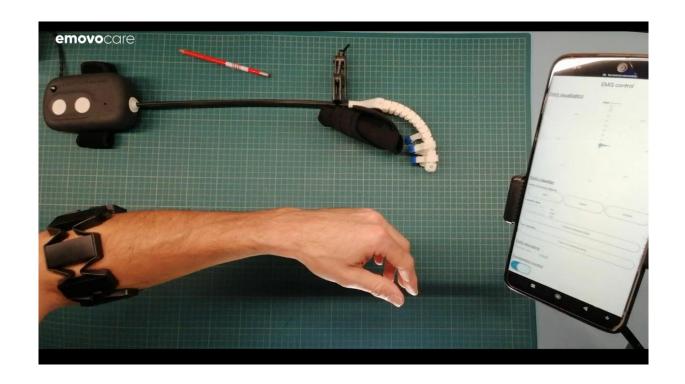
B. 3

C. 4

Draw the boundaries found by KNN for different K



KNN application – Training EMG controller



EMG control App: provides visualization and a way to collect labelled data rapidly

Training phase (~30 sec): User input from 8D EMG -> labelled into 3 classes (closed, open, rest) using the app

Control phase: Real-time KNN classification to control exoskeleton accordingly